Preface

This volume contains the papers and posters selected for presentation at the First European Conference on Smart Sensing and Context (EuroSSC 2006) in Enschede, The Netherlands. EuroSSC 2006 was the first conference of a series aiming at bringing together designers, engineers and researchers to explore two complementary viewpoints:

- A device-centric, technology-driven view: concerning intelligent sensors, sensor networks and information processing for a new generation of networked devices and environments.
- A service-centric, user-driven view: exploring architectures, techniques, and algorithms for context-aware and pro-active applications made possible by the diffusion of ambient communication, cooperating objects, and interaction technologies.

These subjects are active and relevant research areas in themselves, and there are several conferences that address them separately. EuroSSC 2006, however, considered them both, and especially the symbiosis between them, which we expect to result in very inspiring and interesting discussions, as well as new research ideas on how to combine them.

The conference was organized in single tracks covering various issues ranging from intelligent sensors, sensor networks, context management and context awareness, and privacy, to applications and test beds. Organizing a conference for the first time requires lots of preparations, such as finding a publisher, sponsoring organizations, and TPC members and most importantly attracting potential submitters. Fortunately, the amount and quality of the submissions were such that we were in the luxurious position to be able to accept only high quality and relevant papers. The conference attracted world wide attention and submissions came from five continents. A total of 15 accepted full papers and 14 accepted posters came from Asia, North America and Europe. All full papers underwent peer blind reviewing by at least three reviewers, and were judged based on their novelty, technical quality, account of prior work, readability and relevance. The acceptance rate for full papers was 27%. Poster descriptions were reviewed by two referees and accepted posters appear as short papers in the proceedings.

The technical program was complemented by interesting keynotes from Anind Dey and Kevin Warwick, titled End-User Control in the Smart Home, and Upgrading Humans’ Technical Realities and New Morals, respectively. Besides papers, posters, and keynotes, the technical program also included a debate on the social and economical impact of ambient technology.

The EuroSSC 2006 conference was technically co-sponsored by the IEEE Communications Society and supported by the Ministry of Economic Affairs of the Netherlands through the Smart Surroundings, Freeband, and MultimediaN
projects, the European IST funded e-SENSE project, Ambient Systems B.V., CTIT, and was organized in cooperation with EuSAI and ISSNIP.

Apart from the above listed organizations and projects, we would also like to express our gratitude to the many individuals who contributed to organizing EuroSSC 2006 and offering technical and administrative support. Specifically, we want to acknowledge the TPC members, additional referees, LNCS staff, and keynote speakers for their contributions.

August 2006

Paul Havinga
Maria Lijding
Nirvana Meratnia
Maarten Wegdam
Organization

Program Co-chairs

Paul Havinga University of Twente, The Netherlands
Maria Lijding University of Twente, The Netherlands
Nirvana Meratnia University of Twente, The Netherlands
Maarten Wegdam Lucent - Bell Labs, The Netherlands

Steering Committee

Emile Aarts Philips, The Netherlands
Thijs Krol University of Twente, The Netherlands
Sape Mullender Lucent - Bell Labs, USA
M. Palaniswami University of Melbourne, Australia

Program Committee

Peter Apers CTIT, The Netherlands
Stefan Arbanowski Fraunhofer FOKUS, Germany
Sebnem Baydere Yeditepe Univ., Turkey
Hartmut Benz WMC, The Netherlands
Srdjan Capkun Tech. Univ. of Denmark, Denmark
Simon Dobson Univ. College Dublin, Ireland
Henk Eertink Telematica Instituut, The Netherlands
Berry Eggen Eindhoven Univ. of Tech., The Netherlands
Ling Feng Univ. of Twente, The Netherlands
Aart van Halteren Univ. of Twente, The Netherlands
Sonia Heemstra de Groot WMC, The Netherlands
Geert Heijenk Univ. of Twente, The Netherlands
Hermie Hermens Roessingh R&D, The Netherlands
Pierre Jansen Univ. of Twente, The Netherlands
Mika Klemettinen Nokia, Finland
Gerd Kortuem Univ. of Lancaster, UK
Koen Langendoen Delft Univ. of Technology, The Netherlands
Rodger Lea Univ. of British Columbia, Canada
Peter Leijdekkers Univ. of Technology Sydney, Australia
Qing Li City Univ. of Hong Kong, Hong Kong, China
Pedro Marron Univ. of Stuttgart, Germany
Slaven Marusic Univ. of New South Wales, Australia
Ignas Niemegeers Delft Univ. of Technology, The Netherlands
VIII Organization

Stephan Olariu
Anibal Ollero
Zhiyong Peng
Christopher Roadknight
Ilja Radusch
Kay Römer
Hans Scholten
Mihail L. Sichitiu
Tod Sizer
Hong va Leong
Michele Zorzi

Old Dominion Univ., USA
Univ. of Seville, Spain
Wuhan Univ., China
BT Labs, UK
Fraunhofer FOKUS, Germany
Federal Institute of Technology, Switzerland
Univ. of Twente, The Netherlands
North Carolina State Univ., USA
Lucent - Bell Labs, USA
Polytechnic Univ., Hong Kong, China
Univ. of Padova, Italy

Additional Referees

C. Fischer
K. Wac
H. Mei
M. Setten
C. Jacob
D. Linner
M. Kleise
N. Bui
A. Zanella
F. De Pellegrini
D. Miorandi
K. Wah Chow
H. Liu
M. Kamilova
C. Räck
L. Hoesel
L. Evers
R. Gomesi
J. Wu
K. Muthukrishnan
M. Marin-Perianu
S. Chatterjea
R. Marin-Perianu
H. Teunissen
K. Sheikh
U. Bischoff
T. Broens
P. Pawar
G. Halkes
S. Dulman
O. Durmaz Incel
R. Neisse

Sponsoring Institutions

IEEE Communications Society
BSIK Funded Smart Surroundings, Freeband, and MultimediaN projects
European IST funded e-SENSE project
Ambient Systems B.V.
CTIT
Table of Contents

Intelligent Sensors and Sensor Network

Multi-channel Support for Dense Wireless Sensor Networking 1
Ozlem Durmaz Incel, Stefan Dulman, Pierre Jansen

Data Aggregation for Target Tracking in Wireless Sensor Networks 15
Caspar Lageweg, Johan Janssen, Maarten Ditzel

A Zone-Based Clustering Method for Ubiquitous Robots Based on Wireless Sensor Networks ... 25
Kyungmi Kim, Hyunsook Kim, Young Choi, Sukgyu Lee, Kijun Han

Context Awareness and Architectures

A Simulation Study of Integrated Service Discovery 39
Gertjan P. Halkes, Aline Baggio, Koen G. Langendoen

Context Dissemination and Aggregation for Ambient Networks: Jini Based Prototype ... 54
Kazimierz Bałos, Tomasz Szydło, Robert Szymacha, Krzysztof Zieliński

Discovery and Composition of Services for Context-Aware Systems 67
Cristian Hesselman, Andrew Tokmakoff, Pravin Pawar, Sorin Iacob

Infrastructural Support for Dynamic Context Bindings 82
Tom Broens, Aart van Halteren, Marten van Sinderen

Adding Context Awareness to C# ... 98
Anca Rarau, Ioan Salomie

Toward Wide Area Interaction with Ubiquitous Computing Environments ... 113
Michael Blackstock, Rodger Lea, Charles Krusic

Maintaining a World Model in a Location-Aware Smart Space 128
R.K. Harle
Privacy, Application and Test Beds

Shadow: A Middleware in Pervasive Computing Environment for User Controllable Privacy Protection .. 143
Wentian Lu, Jun Li, Xianping Tao, Xiaoxing Ma, Jian Lu

Auditing and Inference Control for Privacy Preservation in Uncertain Environments ... 159
Xiangdong An, Dawn Jutla, Nick Cercone

Developing a Context-Aware System for Providing Intelligent Robot Services ... 174
Chung-Seong Hong, Joonmyun Cho, Kang-Woo Lee, Young-Ho Suh, Hyun Kim, Hyun-Chan Lee

Music for My Mood: A Music Recommendation System Based on Context Reasoning ... 190
Jae Sik Lee, Jin Chun Lee

WLAN Location-Aware Application Based on Accumulated Orientation Strength Algorithm .. 204
I-En Liao, Kuo-Fong Kao, Ke-An Chen

Posters: Short Papers

Context Delivery in Ad Hoc Networks Using Enhanced Gossiping Algorithms ... 218
Syarulnaziah Anawar, Lorcan Coyle, Simon Dobson, Paddy Nixon

An Attribute-Based Naming Architecture for Wireless Sensor Networks Using a Virtual Counterpart Overlay Network 222
Eui-Hyun Jung, Yong-Pyo Kim, Yong-Jin Park, Seong-Yun Cho, Su-Young Han

A Sensor Platform for Sentient Transportation Research 226
Jonathan J. Davies, David N. Cottingham, Brian D. Jones

Attention-Based Information Composition for Multicontext-Aware Recommendation in Ubiquitous Computing 230
Sungrim Kim, Joonhee Kwon

Context-Aware Trust Domains ... 234
Ricardo Neisse, Maarten Wegdam, Marten van Sinderen
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Evaluation Framework for Disseminating Context Information with Gossiping</td>
<td>238</td>
</tr>
<tr>
<td>Graham Williamson, Graeme Stevenson, Steve Neely, Simon Dobson, Paddy Nixon</td>
<td></td>
</tr>
<tr>
<td>Dynamic Bayesian Networks for Visual Surveillance with Distributed Cameras</td>
<td>240</td>
</tr>
<tr>
<td>Wojciech Zajdel, A. Taylan Cemgil, Ben J.A. Kröse</td>
<td></td>
</tr>
<tr>
<td>Embedded Intelligence: Enabling In-Situ Power Management for Wireless Sensor Networks</td>
<td>244</td>
</tr>
<tr>
<td>Rui Ma, Gregory M.P. O’Hare, Michael J. O’Grady</td>
<td></td>
</tr>
<tr>
<td>Proximity Sensing Using IEEE 802.15.4 Radios</td>
<td>248</td>
</tr>
<tr>
<td>Mark Lowton, James Brown, Joe Finney, Gerd Kortuem</td>
<td></td>
</tr>
<tr>
<td>Towards Hovering Information</td>
<td>250</td>
</tr>
<tr>
<td>Alfredo Villalba, Dimitri Konstantas</td>
<td></td>
</tr>
<tr>
<td>Balancing Smartness and Privacy for the Ambient Intelligence</td>
<td>255</td>
</tr>
<tr>
<td>Harold van Heerde, Nicolas Anciaux, Ling Feng, Peter M.G. Apers</td>
<td></td>
</tr>
<tr>
<td>Energy Conservation with EDFI Scheduling</td>
<td>259</td>
</tr>
<tr>
<td>Tjerk Bijlsma, Pierre Jansen</td>
<td></td>
</tr>
<tr>
<td>RuleCaster: A Programming System for Wireless Sensor Networks</td>
<td>262</td>
</tr>
<tr>
<td>Urs Bischoff, Gerd Kortuem</td>
<td></td>
</tr>
<tr>
<td>Losing Control in Pro-active Home Environments</td>
<td>264</td>
</tr>
<tr>
<td>Martijn H. Vastenburg</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>267</td>
</tr>
</tbody>
</table>
Multi-channel Support for Dense Wireless Sensor Networking

Ozlem Durmaz Incel, Stefan Dulman, and Pierre Jansen

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
{durmazo, dulman, jansen}@cs.utwente.nl

Abstract. Currently, most wireless sensor network applications assume the presence of single-channel Medium Access Control (MAC) protocols. When sensor nodes are densely deployed, single-channel MAC protocols may be inadequate due to the higher demand for the limited bandwidth. To overcome this drawback, we propose multiple channel support for improving the performance. Our method allows the nodes to utilize new frequency channels which results in the significant increase on the number of nodes that are granted access to the wireless medium. The method requires only one half-duplex transceiver per node, which is capable of sending and receiving over distinguished frequency channels. Simulation results show that, method successfully utilizes multiple channels and increases the performance proportional to the number of available frequencies for an example single-channel MAC protocol, LMAC.

1 Introduction

Wireless Sensor Networks (WSN) [1], is an evolving technology that is the fundament of various ubiquitous applications. WSN is embedded into the real world and enables monitoring, inspection and analysis of unknown, untested environments with battery operated, tiny sensor devices. Sensor nodes are designed to collect sensor data about the context and to transmit the readings by wireless communication.

With the growing interest, in the near future, WSN will be deployed everywhere in large numbers, which may be of the order of hundreds or thousands and even more [2]. The underlying protocols must be able to deal with these numbers of nodes. In a dense network, demand is higher for the limited bandwidth. This results in less chance to access the wireless medium due to higher contention in a dense neighborhood[1]. Besides the large numbers, limited channel capacity and the influence of interference due to external networks or electronic devices, that share the same parts of the spectrum, will result in a competitive communication environment.

1 We define the neighborhood of a node as the set of nodes which are located within the node’s transmission range. We consider a dense network where a node -on the average- has more than 50 nodes in its neighborhood.
The important reason for this competition is that sensor nodes share a single channel. If the transceiver equipment used for wireless communication is able to operate on multiple non-overlapping channels rather than a single channel, multiple transmissions can take place on the wireless medium without disturbing each other. This leads to lower contention, less collisions and retransmissions. Today’s transceiver hardware, which is used for sensor nodes, supports operation on multiple frequencies. For example, the radio used by Ambient μNode and CC2420 radio for MICAz and Telos sensor nodes can be tuned to different channels.

We consider the LMAC protocol as an example to show the inefficiency of single-channel MAC protocols in densely deployed sensor networks. LMAC is a light-weight and energy efficient MAC protocol proposed for WSN. It is based on the concept of scheduled access to the wireless medium. Each node controls a timeslot to transmit its data. Timeslots are selected in a distributed, self-configuring way. Further details of the LMAC protocol will be given in Section 3.

Besides its advantages, LMAC’s operation depends on the number of timeslots, and in turn on the density of the neighborhood. When all timeslots are exhausted, the node may not be able to access the wireless medium and remains in its initialization state to find an empty timeslot. As the neighborhood gets denser, the number of required timeslots grows rapidly. Therefore, we need a mechanism that reduces the contention in the neighborhood and allows a node to control a timeslot for transmitting its data.

We propose to multiplex the timeslots with the frequency domain for using the spectrum more efficiently. Note that this approach does not use different transceivers; instead one half-duplex transceiver is sufficient. The proposed method allows the nodes to switch their transceivers on new channels on-demand, if the network reaches a density limit. One may argue that switching to different channels by a half-duplex transceiver will cause disconnections in the network. However, our method optimizes connectivity, i.e., connects as many neighbors as possible via multiple channels.

The method is composed of two phases. In the first phase, nodes select timeslots according to the single-channel LMAC rules. In the second phase, nodes select timeslots and also channels to communicate on. The LMAC protocol ensures that a timeslot is only reused after at least 2-hops. Thus, the number of timeslots that a node can select is not only limited by the number of 1-hop neighbors but also by 2-hop neighbors. However, if multiple channels are available, nodes are allowed to select those timeslots that are occupied by their 2-hop neighbors on different channels. The second phase is based on this idea of utilizing different channels by allowing concurrent transmissions.

The rest of the paper is organized as follows: Section 2 summarizes related work. Section 3 introduces the LMAC protocol. Section 4 describes the multi-channel support for LMAC protocol. Section 5 reveals the performance of the method by experimental simulations. Section 6 discusses some concluding remarks and suggestions for future work.

2 A channel is defined to be a frequency range over which two nodes communicate. We will use the terms "channel" and "frequency" interchangeably in the text.
2 Related Work

The channel assignment problem and multi-channel MAC protocols in wireless networks have been extensively studied. Usage of multiple channels in multi-hop ad hoc networks has been shown to increase the throughput considerably, by allowing concurrent transmissions on different non-overlapping channels [7], [8], [9], [10], [11], [12]. Details about the algorithms and comparisons are explained by Mo et al., [13].

When we look into WSN domain, characteristics are quite different from the ad-hoc networks. A typical sensor device is usually equipped with a single half-duplex radio transceiver, which can not transmit and receive simultaneously, but can work on different channels separately. On the other hand, traditional wireless ad hoc networks usually assume more powerful radio hardware and multiple transceivers per node. For instance, typical bandwidth used by WSN is usually very limited (e.g., 50Kbps). Zhou et al. [14] showed why multi-channel MAC protocols which are based on IEEE 802.11 are not suitable for WSN with respect to the packet size, RTS/CTS mechanism and limited bandwidth. We show why single-channel MAC protocols are not efficient in densely deployed sensor networks, for an example single-channel MAC protocol.

Zhou et al., [14] recently introduced the MMSN multi-frequency MAC protocol especially designed for WSN. MMSN consists of two aspects: frequency assignment and medium access. In frequency assignment, each node is assigned a frequency for data reception. Hence, a node intending to transmit should know about the receiver’s frequency. Broadcast packets are transmitted on a dedicated channel. Medium access is a combination of contention and scheduled operation. Our method is not a complete MAC protocol proposal, but it provides multiple channel support for an example single-channel MAC protocol: Timeslots are multiplexed with frequency domain on demand, if the number of timeslots in the neighborhood is exhausted on a single channel.

IEEE 802.15.4 standard [15] also provides multiple channels for Personal Area Networks (PAN). The idea is to use non-conflicting channels to identify different PAN’s. This is different than our approach where we introduce multiple channels in a dense network when the demand for the limited bandwidth is higher.

3 The LMAC Protocol

LMAC [5] is an energy-efficient medium access protocol designed for WSN. The protocol enables the communicating entities to access the wireless medium on a time-scheduled basis over a single frequency channel. Time-scheduled method has a natural advantage of collision free medium access, which avoids wasting energy and time.

Like other time-scheduled MAC algorithms, LMAC also considers time to be divided into slots which are further organized into periodic frames. A node with the intention to transmit can take control of a timeslot. A node transmits a control message at the beginning of its timeslot to address the receiver nodes.
Neighbor nodes must always listen at the beginning of a timeslot which contains information about the intended receivers, synchronization and the current timeslot. If neighbor nodes discover that they are not the intended receivers they turn off their power-consuming transceivers.

The timeslot selection mechanism in LMAC is fully distributed, thus needs no base-stations or central authorities to decide and allocate the timeslots to the nodes. In addition, the multi-hop nature of the WSN allows the timeslots to be reused.

For timeslot selection, the nodes use an algorithm based on local information only. Each node maintains a vector of length equal to the number of timeslots. This vector is used for storing the occupied slots within the 2-hop neighborhood. Initially, the vector is cleared. Nodes transmit information in the control message about those timeslots that the node considers to be occupied by itself and its 1-hop neighbors. When a packet is received, the logical OR operation is executed to update the information about the occupied slots in the neighborhood and the information is stored in the vector. If a node is not yet controlling any timeslot, it selects one from the free slots. This method ensures that a timeslot is only reused after at least 2-hops. The distributed algorithm for timeslot selection is shown in Figure 1. The node marked with "?" is searching for a timeslot and other nodes control the timeslots they are marked by. It receives the occupied slots information from the neighbors, executes the OR operation and finds timeslot 7 as free and grabs it.

When there are no more free slots (i.e. in a dense neighborhood), the node remains in its initialization state, periodically monitoring frames to find an empty timeslot. Reserving a timeslot for each node or increasing the number of timeslots

![Fig. 1. LMAC Protocol: Timeslot selection](image-url)
in the network may be a possible solution. However, this would increase the latency of communication and time of waiting, before nodes get the opportunity to transmit. For this reason, the frame interval should be kept as short as possible and reused as much as possible. Currently, in a typical LMAC implementation, frame length is 1 second and a frame consists of 32 timeslots.

4 Multi-channel Support for LMAC

To overcome the deficiency of single-channel LMAC protocol in dense networks, we propose an algorithm which utilizes multiple channels. Besides, the algorithm optimizes connectivity, i.e., connects as many neighbors as possible.

The algorithms is based on local information only: it does not need central authorities to decide and allocate the frequencies. For instance, a central solution for multiple channel allocation -which is also used in cellular networks or DECT- would be to let a base-station (for example a sink node which is a gateway between the users of the network and the network itself in WSN) assign the channels. The sink node could assign frequencies to its 1-hop neighbors, and frequency information can be broadcast to the remaining nodes, in a multi-hop fashion. The nodes that are receiving the broadcast messages with frequency information, switch to the associated frequency. In this approach, the ultimate view of the network is partitions communicating on different frequencies. Nodes are only aware of their neighbors which are using the same channel. If two sensor nodes are within each other’s neighborhood but they are not connected neighbors, the data packets that are destined for each other have to travel all the way from the sender to the sink node and from sink node to the destination node. This method would require a lot of messages to be relayed, and cause waste of energy and latency.

Before describing the algorithm in detail, we summarize the design issues and assumptions.

4.1 Design Issues and Assumptions

- N non-overlapping frequency channels are available. Nodes are aware of the number and frequency range of the channels.
- All the nodes are communicating in the basic channel (single channel) at the beginning. If timeslots are exhausted in a node’s neighborhood on the basic channel, new channels are introduced.
- The switching delay from one channel to another can be neglected, e.g., for the transceiver of Ambient μNode sensor node platform, 650μsec is much less than a typical timeslot duration, 31.25msec.
- Each node has one radio interface which is a half-duplex transceiver. A node cannot both transmit and receive at the same time, simultaneously.
- To establish multi-hop time synchronization ([16], [17]), every node uses its parent node to synchronize to every frame. A node can be a parent of another node if it’s closer to the sink.
4.2 Functional Description

The algorithm is composed of 2 phases. In the first phase, nodes select the timeslots according to the single-channel LMAC rules. In the second phase, channel selection takes place. The second phase is based on 2-hop neighborhood information. The LMAC protocol ensures that a timeslot is only reused after at least 2-hops. Thus, the number of timeslots that a node can select is not only limited by the number of 1-hop neighbors but also by 2-hop neighbors. Moreover, the simulation results (Section 5) have shown that on the average, more than 30% of the occupied slots of a node are claimed by its 2nd hop neighbors. A node announces these 2-hop slots as free for its neighbors. However, the slots cannot be grabbed by a slotless node since all timeslots are occupied in its neighborhood. A slotless node cannot use the announced free slots on the same channel but can do so on a different channel. Therefore it monitors the announced free slots and marks the announcing node as a potential bridge. We call this node as a bridge node since it connects the slotless node to the rest of the network. A slotless node selects a bridge among the potential bridges and negotiates with the bridge on an appropriate slot/frequency pair. This negotiation keeps the network connected and the new joining node does not disturb the current established connectivity.

Figure 2 shows the idea of the second phase. In the figure, the slotless node is marked by a “?” Other nodes control the timeslots they are marked by. Node 3 announces its occupied vector as ”1011” where node 4 is announcing as ”0111”. All timeslots in ?’s neighborhood are occupied (1011 OR 0111 = 1111). If a single-channel LMAC protocol was used, the node could not grab a slot in this situation. If multiple channels are available, after receiving this information, the slotless node views node 3 on slot 2 and node 4 on slot 1 as potential bridges. We explain the algorithm in the next sections based on the example given in Figure 2.

Bridge and non-interfering Channels Discovery. In the first phase of the algorithm, nodes are communicating on the basic channel and they are only aware of their neighborhood on that channel. However, before a slotless node started the second phase of searching for potential bridge nodes, other slotless nodes may have already connected to the network on different channels. In order to be aware of all potential bridges operating on different channels, a slotless node scans different channels for bridge node discovery. This process also helps the node to discover all the occupied timeslots in different frequencies before deciding on a non-interfering frequency/timeslot pair.

A slotless node creates two matrices about the collected information. One is for identifying the occupied slot/frequency pairs in the neighborhood. For the example shown in Figure 2, the slotless node creates the matrices shown in Figure 3. Here, number of timeslots is 4 and number of frequencies is 3. In the occupied matrix, all the slots on the basic channel (frequency 0) are occupied where other channels are marked as free. In the free matrix, the slotless node records node 3 on slot 2 and and node 4 on slot 1 as potential bridges in any of the available frequencies other than the basic channel. After constructing the
matrices, the slotless node extracts the required information about potential bridges. A bridge is selected due to some function from the set of potential bridges, such as the signal strength, degree of connectivity, battery level, etc.

Channel Negotiation. For the bridge node to be aware of a slotless node requesting negotiation, the slotless node should be able to send its request. However, it does not have a timeslot to transmit. One option for negotiation would be to take place on a dedicated control channel. Potential bridge nodes would switch to the control channel on slots which they announce to be free and listen for the requests. However, this would be very costly for the nodes in terms of energy if they have most of their timeslots as free. They would have to keep their transceiver always on, and probably receive no request. Instead, when a potential bridge node does not have data to send, it sends a notification for those slotless nodes which are interested in negotiation, during its control message (Section 3). In the rest of the timeslot, during data section the slotless node sends its request to the bridge node. This request includes the channel information on which the slotless node intends to communicate with the bridge. Here, a question may arise what if there are more slotless nodes which are intending to negotiate with this bridge node. To prevent collisions, nodes send the request based on a contention mechanism.

After getting the request, the bridge node also checks to investigate whether there are any conflicting transmissions on that slot/frequency pair in its neighborhood. It acknowledges the slotless node during its timeslot in the next frame if there is no conflict. After starting transmissions, still there may be collisions or interference with some other nodes. In this case, the agreement is canceled by the both parties and the requesting slotless node restarts the same process. For the example shown in Figure 2 let’s assume that node ? has agreed with

![Diagram of network nodes and connections]

Fig. 2. Operation of the algorithm
node 3 on frequency 1 over slot 2. The occupied vectors for the nodes are shown in Figure 4.

After a slotless node has negotiated with a bridge node and is further controlling a timeslot, it can also play role as a potential bridge as well since it’s already a part to the network. A sketch about execution model of multi channel LMAC is shown in Figure 5.

5 Performance Evaluation

In this section we present some experimental results concerning the inefficiency of LMAC protocol in dense networks, in terms of the number of active nodes (nodes that control a timeslot). Moreover, we investigate the overhead of using multiple channels. We have carried out simulations in the Omnet++ environment [18].
The aim of doing experiments is to prove that the concept of the multi-channel support for LMAC protocol is valid.

Fixed simulation parameters are tabulated in Table 1. Sensor nodes are deployed randomly within the terrain, and are assumed to be static during the simulation interval. A topology generator tool is used to deploy sensor nodes randomly (with a uniform distribution) within the given dimensions of terrain size. We create 5000 random topologies and for each simulation run, (whether for LMAC or multi-channel LMAC version) the same topology is used. By changing the number of nodes but keeping the terrain size and the transmission range fixed, we simulate different levels of neighbor density. We adopt the neighbor density calculation from Bulusu et al. [19], as:

$$\mu = \frac{(NIR^2)}{A}$$

where N is the number of nodes, R is the transmission range and A is the size of the terrain. So densities for different number of nodes (50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550) are approximately 24, 48, 72, 96, 120, 144, 168, 192, 216, 240 and 264. Note that these numbers include only 1-hop densities and don’t include 2nd hops. So, the neighbor densities in the example topologies are larger than these numbers and almost covering all of the nodes in the network.

```plaintext
controlled_slot = NO_VALUE
While (phase 1) do
  if (current_slot == controlled_slot)
    transmit
  else
    receive
  if (controlled_slot == NO_VALUE)
    grab a timeslot
    update synchronization
    update current_slot
end while (phase 2) do
  if (controlled_slot == NO_VALUE)
    role = slotLess
    discover potential bridge nodes
    select a bridge/frequency/slot
    send a negotiation request
    if (acknowledgment is received)
      controlled_slot = selected slot
    else
      Select another bridge/frequency/slot
  else
    if (occupied_slots_local != full)
      role = potential_bridge
      if (negotiation request is received)
        check the proposed frequency during proposed slot
        if (free)
          acknowledge in the next frame
          switch to the proposed frequency during proposed slot
      if (current_slot == controlled_slot)
        Transmit
      else
        Receive
end while
```

Fig. 5. Multi channel support for LMAC: execution model
The traffic pattern used in the simulations is that every node broadcasts its occupied vector during its timeslot in its neighborhood. We assume error-free links. The simulation ends either when all the nodes control a timeslot or when there are no more timeslots that can be grabbed by a node. The simulation time limit is 100 seconds.

Firstly, we show how multiple channels increase the number of active nodes in the network. In Figure 6, the percentage of active nodes (\(\text{[The nodes that have a timeslot/Number of nodes]*100}\)) versus different number of densities is shown. When the network becomes denser, the percentage of active nodes decreases rapidly in LMAC. For 240 neighbors, it is below 20%. Consequently, LMAC suffers from density. If we compare the results of multi-channel LMAC with pure LMAC’s results we see that the performance is above 90% even in the most dense topologies. This method ensures that nodes can communicate, i.e. have a timeslot in a dense neighborhood even the neighborhood is getting denser with

![Graph showing percentage of active nodes versus density](image-url)

Fig. 6. Percentage of active nodes versus density

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrain Size</td>
<td>100*100 m²</td>
</tr>
<tr>
<td>Transmission Range</td>
<td>40m</td>
</tr>
<tr>
<td>Sensor Node Deployment</td>
<td>Uniform</td>
</tr>
<tr>
<td>Mobility Characteristic</td>
<td>Static</td>
</tr>
<tr>
<td>Density of Neighborhood</td>
<td>24, 48, 72, 96</td>
</tr>
<tr>
<td></td>
<td>120, 144, 168, 196 nodes</td>
</tr>
<tr>
<td>Number of Time Slots</td>
<td>32 timeslots</td>
</tr>
<tr>
<td>MAC frame size</td>
<td>1 sec.</td>
</tr>
<tr>
<td>Number of Frequencies</td>
<td>8 (non-overlapping)</td>
</tr>
<tr>
<td>Number of Runs</td>
<td>5000</td>
</tr>
</tbody>
</table>